北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2010, Vol. 33 ›› Issue (1): 56-60.doi: 10.13190/jbupt.201001.56.213

• 论文 • 上一篇    下一篇

基于修正交叉视觉皮质模型的图像分割方法

牛建伟1;沈思思1;童超1;高小鹏1;汪孔桥2   

  1. (1.北京航空航天大学 计算机学院, 北京 100191; 2. 诺基亚中国研究院, 北京 100176)
  • 收稿日期:2009-05-12 修回日期:2009-08-08 出版日期:2010-02-28 发布日期:2010-02-28
  • 通讯作者: 沈思思

A New Image Segmentation Method Based on Modified Intersecting Cortical Model

NIU Jian-wei1;SHEN Si-si1;TONG Chao1;GAO Xiao-peng1;WANG Kong-qiao2   

  1. (1.School of Computer Science and Engineering, Beihang University, Beijing 100191, China; 2.Nokia China Research Center, Beijing 100176, China)
  • Received:2009-05-12 Revised:2009-08-08 Online:2010-02-28 Published:2010-02-28

摘要:

提出了一种基于修正交叉视觉皮质模型(MICM)的图像自适应分割新方法. 根据待分割图像的自身特性,自适应地设定参数,并以互信息量为目标函数选取最佳分割结果. 该方法解决了针对不同的图像需要人工设定交叉皮质模型(ICM)参数和需要人工选取最佳分割结果的2个问题. 实验结果表明,与通过大量实验获得模型参数的脉冲耦合神经网络(PCNN)基本模型和ICM基本模型相比,MICM与其综合评价函数值相近;与模糊聚类分割算法和最大类间方差(OTSU)算法相比,MICM算法有较明显的视觉优势,并且其综合评价函数值也分别提高了约15%和13%.

关键词: 图像分割, 交叉视觉皮质模型, 自适应, 互信息量

Abstract:

An image segmentation method based on the modified intersecting cortical model (MICM) is proposed to set the MICM parameters adaptively according to the different characteristics of images and choose the optimal segmentation results automatically, which are two main obstacles for the basic intersecting cortical model(ICM) to be used in practice. Experiments show that the comprehensive evaluation value of MICM is close to those of basic pulse coupled neural network(PCNN) and basic intersecting cortical model. Compared with the fuzzy C-means algorithm and OTSU algorithm, MICM is of visually better segmentation and the comprehensive evaluation value of MICM increases by approximately 15% and 13% respectively.

Key words: image segmentation, intersecting cortical model, self-adaptive, mutual information